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Stochastic volatility models

The volatility of stock price log-returns is stochastic

Black-Scholes Heston (affine SVJD)

volatility constant stochastic ∈ R+

calls and puts closed-form Fourier transform
exotic options closed-form ...

Black-Scholes model ⊂ Jacobi model → Heston model

I stochastic volatility on a parametrized compact support

I vanilla and exotic option prices have a series representation

I fast and accurate price approximations
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Jacobi Stochastic Volatility model

Fix 0 ≤ vmin < vmax . Define the quadratic function

Q(v) =
(v − vmin)(vmax − v)

(
√
vmax −

√
vmin)2

≤ v

Jacobi Model
Stock price dynamics St = eXt given by

dVt = κ(θ − Vt) dt + σ
√
Q(Vt) dW1t

dXt = (r − Vt/2) dt + ρ
√
Q(Vt) dW1t +

√
Vt − ρ2 Q(Vt) dW2t

(1)
for κ, σ > 0, θ ∈ [vmin, vmax ], interest rate r , ρ ∈ [−1, 1], and
2-dimensional BM W = (W1,W2)

Remark: e−rtSt = e−rt+Xt is a martingale
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Some properties

The function Q(v)

v ≥ Q(v), v = Q(v) if and only if v =
√
vminvmax , and Q(v) ≥ 0

for all v ∈ [vmin, vmax ]

0 vmin v∗ vmax

0
vmin

v∗

vmax

Instantaneous variance
d〈X ,X 〉t = Vt ∈ [vmin, vmax ] is a Jacobi process
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Some properties (cont.)

Polynomial model

(Vt ,Xt) is a polynomial diffusion – efficient calculation of
moments

Black-Scholes model nested
Take vmin = vmax = σ2

BS

Heston model as a limit case
If vmin → 0 and vmax →∞ then (Vt ,Xt) converges weakly in the
path space to the Heston model

Bounded implied volatility

Option with nonnegative BS gamma (⇔ convex payoff for Europ.)
√
vmin ≤ σIV ≤

√
vmax

⇒ Forward start option σIV does not explode (Jacquier and
Roome 2015)
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Log-price density

We define

CT =

∫ T

0

(
Vt − ρ2Q(Vt)

)
dt

Theorem
Let ε < 1/(2vmaxT ). If CT > 0 then the distribution of XT admits
a density gT (x) on R that satisfies∫

R
eεx

2
gT (x) dx <∞ (2)

If
E
[
CT
−1/2

]
<∞ (3)

then gT (x) and eεx
2
gT (x) are uniformly bounded and continuous

on R. A sufficient condition for (3) to hold is

vmin > 0 and ρ2 < 1

Remark: The Heston model does not satisfy (2) for any ε > 0

Log-price density 6/22



Log-price density

We define

CT =

∫ T

0

(
Vt − ρ2Q(Vt)

)
dt

Theorem
Let ε < 1/(2vmaxT ). If CT > 0 then the distribution of XT admits
a density gT (x) on R that satisfies∫

R
eεx

2
gT (x) dx <∞ (2)

If
E
[
CT
−1/2

]
<∞ (3)

then gT (x) and eεx
2
gT (x) are uniformly bounded and continuous

on R. A sufficient condition for (3) to hold is

vmin > 0 and ρ2 < 1

Remark: The Heston model does not satisfy (2) for any ε > 0
Log-price density 6/22



A crucial corollary

Corollary

Assume (3) holds. Then `(x) = gT (x)
w(x) ∈ L2

w , where

L2
w :=

{
h :

∫
R
|h(x)|2w(x) dx

}
and w(x) is any Gaussian density with variance σ2

w satisfying

σ2
w >

vmaxT

2
(4)

I (Filipovic, Mayerhofer, Schneider 2013) For the Heston model

we have that `(x) = gT (x)
w(x) ∈ L2

w , where w(x) is a (bilateral)
Gamma density
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Weighted L2–space

The weight function

w(x) = Gaussian density with mean µw and variance σ2
w

The weighted Hilbert space

L2
w =

{
f (x) | ‖f ‖2

w =

∫
R
f (x)2 w(x)dx <∞

}
which is a Hilbert space with scalar product

〈f , g〉w =

∫
R
f (x)g(x)w(x)dx

Orthonormal basis – Generalized Hermite polynomials

Hn(x) =
1√
n!

Hn

(
x − µw
σw

)
where Hn(x) are the standard Hermite polynomials
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Price approximation

Pricing problem

Assume that XT has a density gT (x)

πf = E[f (XT )] =

∫
R
f (x)gT (x)dx

Price series expansion

Suppose `(x) = gT (x)/w(x) ∈ L2
w and f (x) ∈ L2

w . Then

πf = 〈f , `〉w =
∑
n≥0

fn`n (5)

for the Fourier coefficients and Hermite moments

fn = 〈f ,Hn〉w , `n = 〈`,Hn〉w =

∫
R
Hn(x)gT (x) dx

Price approximation

πf ≈ π(N)
f =

N∑
n=0

fn`n =
N∑

n=0

〈f , `nHn〉w =

∫
R
f (x)g

(N)
T (x) dx (6)
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Density approximation

“Gram-Charlier A expansion”

g
(N)
T (x) = w(x)

N∑
n=0

`nHn(x)

Gram-Charlier expansions of prices: Jarrow and Rudd (1982), Corrado and

Su (1996) ... Drimus, Necula, and Farkas (2013), Heston and Rossi (2015)...
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g
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T
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`n

σw ∈ {1ν, 1.5ν, 2ν} with ν =
√

vmaxT/2 + ε, T = 1/12, X0 = 0, κ = 0.5,

θ = V0 = (0.25)2, σ = 0.25, vmin = (0.10)2, ρ = −0.5, and vmax = 1
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European calls and puts - Fourier coefficients

Theorem
Consider the discounted payoff function for a call option with log
strike k ,

f (x) = e−rT
(
ex − ek

)+

Its Fourier coefficients fn for n ≥ 1 are given by

fn = e−rT+µw 1√
n!
σw In−1

(
k − µw
σw

;σw

)
The functions In(µ; ν) are defined recursively by

I0(µ; ν) = e
ν2

2 Φ(ν − µ);

In(µ; ν) = Hn−1(µ)eνµφ(µ) + νIn−1(µ; ν), n ≥ 1

where Hn(x) are the standard Hermite polynomials, Φ(x) denotes
the standard Gaussian distribution function, and φ(x) its density

Density approximation and pricing algorithm 11/22



Computational cost

Theorem
The coefficients `n are given by

`n = [h1(V0,X0), . . . , hM(V0,X0)] eTGn eπ(0,n), 0 ≤ n ≤ N

where ei is the i–th standard basis vector in RM and h0, . . . , hM is
a basis of polynomials. Gn is the (M ×M)–matrix representing the
infinitesimal generator of (Vt ,Xt) on PolN – sparse matrix

10 20 100 500

10−2

10−1

1

`n, Gn

se
co
n
d
s

10 20 100 500

10−4

10−3 fn
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Example: Call option pricing

-0.015

0
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f n

vmax = 0.3 vmax = 1 vmax = 5

-0.25

0

0.25

` n
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0.04

π
(n

)
f
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Figure: The Fourier coefficients (first row), the Hermite coefficients
(second row), and the price expansion (third row) as a function of the
order n. The parameters values are T = 1/12, X0 = k = 0, κ = 0.5,
θ = V0 = (0.25)2, σ = 0.25, vmin = (0.10)2, ρ = −0.5, and
vmax ∈ {0.3, 1, 5}
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Error bounds

Pricing error πf − π(N)
f = ε(N)

∣∣∣ε(N)
∣∣∣ =

∣∣∣∣∣∑
n>N

fn`n

∣∣∣∣∣ ≤
√√√√(∑

n>N

f 2
n

)(∑
n>N

`2
n

)

Type of bounds

1. Analytic: `2
n, f

2
n ≤ C × n−k for some k > 1 and C > 0

2. Numeric:
∑

n>N `
2
n = ‖`‖2

w −
∑N

n=0 `
2
n

0 100 200 300

0.1%

1%

10%
b(n)/π

(n)
f

0 100 200 300

0.028

0.029

0.030 π
(n)
f ± b(n)
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Volatility smiles - Call option

Fix θ =
√
vminvmax = v∗ and scale up vmin

0 0.2 0.4
0

0.25

0.50

vmin = (0.10)2

0 0.2 0.4

vmin = (0.175)2

0 0.2 0.4

vmin = (0.245)2

−0.2 0 0.2

25%

30%

−0.2 0 0.2 −0.2 0 0.2

Diffusion function σ
√

Q(v) (1st row) and smile (2nd row)
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Key corollary revisited

Log-returns density

Yti = Xti − Xti−1

for 0 ≤ t0 < t1 < t2 < · · · < tn, Y = (Yti ) has a density gt0,...,tn(y)

Weighting with Gaussians

Define w(y) =
∏n

i=1 wi (yi ) where wi (yi ) is a Gaussian density with

variance σ2
wi

, then
gt0,...,tn (y)

w(y) ∈ L2
w if

σ2
wi
>

vmax(ti − ti−1)

2

Exotic option pricing 16/22



Forward start call option
Payoff function e−rt2(St2 − ekSt1)+ with 0 = t0 < t1 < t2

f̃ (y1, y2) = e−rt2(eX0+y1+y2 − ek+X0+y1)+

Fourier coefficients

f̃m1,m2 =

∫
R2

f̃ (y)Hm1(y1)Hm2(y2)w(y)dy

= f
(0,k)
m2

σm1
w√
m1!

eX0−rT+µw1 +σ2
w1
/2

Hermite moments

`m1,m2 = E[Hm1(Yt1)Hm2(Yt2)]

= E [Hm1(Yt1)E [Hm2(Yt2) | Ft1 ]]

Price approximation

πFS =
∑

m1,m2≥0

f̃m1,m2`m1,m2 ≈
m1+m2≤N∑
m1,m2=0

f̃m1,m2`m1,m2 =: π
(N)
FS
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Forward start options on the return

1d 2w 1m

25%

30%

vmax = 1

1d 2w 1m

vmax = (0.3)2

Figure: Implied volatility of a forward start option on the return with
maturity t + T , and strikes k = −0.10 (black line), k = −0.05 (blue
line), and k = 0 (red line) are displayed as a function of maturity T .
Here t = 1/12, X0 = 0, κ = 0.5, V0 = θ = (0.25)2, σ = 0.25,
vmin = 10−4, and ρ = −0.5
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Conclusion

I new stochastic volatility model, Vt is a Jacobi process

I option price series representation in weighted L2
w space

I Hermite moments (polynomial model)
I Fourier coefficient (recursive formulas)

I computationally fast, empirically & Heston model,
pricing error bounds

I methodology applies to exotic option pricing
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Merci beaucoup!
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SPX implied volatility calibration
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Jacobi 0.3660 0.7507 1.0072 -0.6057 0.1178 0.0499 0.4476 0.8461
Heston 0.3655 0.7498 0.8573 -0.6047 0.1178 0.9447
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Forward start call option (cont.)
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