The Jacobi Stochastic Volatility model

Damien Ackerer ¹ Damir Filipovič ¹ Sergio Pulido ²

¹EPFL and Swiss Finance Institute

²ENSIIE & Université d'Évry-Val-d'Essonne

London-Paris Workshop on Mathematical Finance Paris, September 29, 2016

European Research Council Established by the European Commission

Stochastic volatility models

The volatility of stock price log-returns is stochastic

	Black-Scholes	Heston (affine SVJD)
volatility	constant	stochastic $\in \mathbb{R}_+$
calls and puts	closed-form	Fourier transform
exotic options	closed-form	

 $\mathsf{Black}\text{-}\mathsf{Scholes} \ \mathsf{model} \subset \fbox{\mathsf{Jacobi}} \ \mathsf{model} \to \mathsf{Heston} \ \mathsf{model}$

- stochastic volatility on a parametrized compact support
- vanilla and exotic option prices have a series representation
- fast and accurate price approximations

Jacobi Stochastic Volatility model

Fix $0 \le v_{min} < v_{max}$. Define the quadratic function

$$Q(v) = \frac{(v - v_{min})(v_{max} - v)}{(\sqrt{v_{max}} - \sqrt{v_{min}})^2} \le v$$

Jacobi Model

Stock price dynamics $S_t = e^{X_t}$ given by

$$dV_t = \kappa(\theta - V_t) dt + \sigma \sqrt{Q(V_t)} dW_{1t}$$

$$dX_t = (r - V_t/2) dt + \rho \sqrt{Q(V_t)} dW_{1t} + \sqrt{V_t - \rho^2 Q(V_t)} dW_{2t}$$

(1)

for $\kappa, \sigma > 0$, $\theta \in [v_{min}, v_{max}]$, interest rate $r, \rho \in [-1, 1]$, and 2-dimensional BM $W = (W_1, W_2)$

Jacobi Stochastic Volatility model

Fix $0 \le v_{min} < v_{max}$. Define the quadratic function

$$Q(v) = \frac{(v - v_{min})(v_{max} - v)}{(\sqrt{v_{max}} - \sqrt{v_{min}})^2} \le v$$

Jacobi Model

Stock price dynamics $S_t = e^{X_t}$ given by

$$dV_t = \kappa(\theta - V_t) dt + \sigma \sqrt{Q(V_t)} dW_{1t}$$

$$dX_t = (r - V_t/2) dt + \rho \sqrt{Q(V_t)} dW_{1t} + \sqrt{V_t - \rho^2 Q(V_t)} dW_{2t}$$

(1)

for $\kappa, \sigma > 0$, $\theta \in [v_{min}, v_{max}]$, interest rate $r, \rho \in [-1, 1]$, and 2-dimensional BM $W = (W_1, W_2)$

Remark: $e^{-rt}S_t = e^{-rt+X_t}$ is a martingale

Some properties

The function Q(v) $v \ge Q(v)$, v = Q(v) if and only if $v = \sqrt{v_{min}v_{max}}$, and $Q(v) \ge 0$ for all $v \in [v_{min}, v_{max}]$

Some properties

The function Q(v) $v \ge Q(v)$, v = Q(v) if and only if $v = \sqrt{v_{min}v_{max}}$, and $Q(v) \ge 0$ for all $v \in [v_{min}, v_{max}]$

Instantaneous variance $d\langle X, X \rangle_t = V_t \in [v_{min}, v_{max}]$ is a Jacobi process

Motivation and model specification

Polynomial model

(V_t, X_t) is a polynomial diffusion – efficient calculation of moments

Polynomial model

 (V_t, X_t) is a polynomial diffusion – efficient calculation of moments

Black-Scholes model nested Take $v_{min} = v_{max} = \sigma_{BS}^2$

Polynomial model

 (V_t, X_t) is a polynomial diffusion – efficient calculation of moments

Black-Scholes model nested Take $v_{min} = v_{max} = \sigma_{BS}^2$

Heston model as a limit case If $v_{min} \rightarrow 0$ and $v_{max} \rightarrow \infty$ then (V_t, X_t) converges weakly in the path space to the Heston model

Polynomial model

 (V_t, X_t) is a polynomial diffusion – efficient calculation of moments

Black-Scholes model nested Take $v_{min} = v_{max} = \sigma_{BS}^2$

Heston model as a limit case If $v_{min} \rightarrow 0$ and $v_{max} \rightarrow \infty$ then (V_t, X_t) converges weakly in the path space to the Heston model

Bounded implied volatility

Option with nonnegative BS gamma (\Leftrightarrow convex payoff for Europ.)

 $\sqrt{v_{min}} \le \sigma_{\rm IV} \le \sqrt{v_{max}}$

\Rightarrow Forward start option $\sigma_{\rm IV}$ does not explode (Jacquier and Roome 2015)

Motivation and model specification

Log-price density

We define

$$C_{T} = \int_{0}^{T} \left(V_{t} - \rho^{2} Q(V_{t}) \right) dt$$

Theorem

Let $\epsilon < 1/(2v_{max}T)$. If $C_T > 0$ then the distribution of X_T admits a density $g_T(x)$ on \mathbb{R} that satisfies

$$\int_{\mathbb{R}} e^{\epsilon x^2} g_{\mathcal{T}}(x) \, dx < \infty \tag{2}$$

lf

$$\mathbb{E}\left[C_{T}^{-1/2}\right] < \infty \tag{3}$$

then $g_T(x)$ and $e^{\epsilon x^2} g_T(x)$ are uniformly bounded and continuous on \mathbb{R} . A sufficient condition for (3) to hold is $v_{min} > 0$ and $\rho^2 < 1$

Log-price density

We define

$$C_{T} = \int_{0}^{T} \left(V_{t} - \rho^{2} Q(V_{t}) \right) dt$$

Theorem

Let $\epsilon < 1/(2v_{max}T)$. If $C_T > 0$ then the distribution of X_T admits a density $g_T(x)$ on \mathbb{R} that satisfies

$$\int_{\mathbb{R}} e^{\epsilon x^2} g_{\mathcal{T}}(x) \, dx < \infty \tag{2}$$

lf

$$\mathbb{E}\left[C_{T}^{-1/2}\right] < \infty \tag{3}$$

then $g_T(x)$ and $e^{\epsilon x^2} g_T(x)$ are uniformly bounded and continuous on \mathbb{R} . A sufficient condition for (3) to hold is $v_{min} > 0$ and $\rho^2 < 1$

Remark: The Heston model does not satisfy (2) for any $\epsilon > 0$

A crucial corollary

Corollary Assume (3) holds. Then $\ell(x) = \frac{g_T(x)}{w(x)} \in L^2_w$, where

$$L^2_w := \left\{ h : \int_{\mathbb{R}} |h(x)|^2 w(x) \, dx \right\}$$

and w(x) is any Gaussian density with variance σ_w^2 satisfying

$$\sigma_w^2 > \frac{v_{max} T}{2} \tag{4}$$

A crucial corollary

Corollary Assume (3) holds. Then $\ell(x) = \frac{g_T(x)}{w(x)} \in L^2_w$, where

$$L^2_w := \left\{ h: \int_{\mathbb{R}} |h(x)|^2 w(x) \, dx \right\}$$

and w(x) is any Gaussian density with variance σ_w^2 satisfying

$$\sigma_w^2 > \frac{v_{max} T}{2} \tag{4}$$

▶ (Filipovic, Mayerhofer, Schneider 2013) For the Heston model we have that $\ell(x) = \frac{g_T(x)}{w(x)} \in L^2_w$, where w(x) is a (bilateral) Gamma density

Weighted L^2 -space

The weight function

w(x) = Gaussian density with mean μ_w and variance σ_w^2

Weighted L^2 -space

The weight function

w(x) = Gaussian density with mean μ_w and variance σ_w^2

The weighted Hilbert space

$$L^2_w = \left\{ f(x) \mid \|f\|^2_w = \int_{\mathbb{R}} f(x)^2 w(x) dx < \infty \right\}$$

which is a Hilbert space with scalar product

$$\langle f,g\rangle_w = \int_{\mathbb{R}} f(x)g(x)w(x)dx$$

Weighted L^2 -space

The weight function

w(x) = Gaussian density with mean μ_w and variance σ_w^2

The weighted Hilbert space

$$L^2_w = \left\{ f(x) \mid \|f\|^2_w = \int_{\mathbb{R}} f(x)^2 w(x) dx < \infty \right\}$$

which is a Hilbert space with scalar product

$$\langle f,g\rangle_w = \int_{\mathbb{R}} f(x)g(x)w(x)dx$$

Orthonormal basis - Generalized Hermite polynomials

$$H_n(x) = \frac{1}{\sqrt{n!}} \mathscr{H}_n\left(\frac{x-\mu_w}{\sigma_w}\right)$$

where $\mathscr{H}_n(x)$ are the standard Hermite polynomials

Density approximation and pricing algorithm

Price approximation

Pricing problem

Assume that X_T has a density $g_T(x)$

$$\pi_f = \mathbb{E}[f(X_T)] = \int_{\mathbb{R}} f(x)g_T(x)dx$$

Price approximation

Pricing problem

Assume that X_T has a density $g_T(x)$

$$\pi_f = \mathbb{E}[f(X_T)] = \int_{\mathbb{R}} f(x)g_T(x)dx$$

Price series expansion

Suppose $\ell(x) = g_T(x)/w(x) \in L^2_w$ and $f(x) \in L^2_w$. Then

$$\pi_f = \langle f, \ell \rangle_w = \sum_{n \ge 0} f_n \ell_n \tag{5}$$

for the Fourier coefficients and Hermite moments

$$f_n = \langle f, H_n \rangle_w, \quad \ell_n = \langle \ell, H_n \rangle_w = \int_{\mathbb{R}} H_n(x) g_T(x) \, dx$$

Price approximation

Pricing problem

Assume that X_T has a density $g_T(x)$

$$\pi_f = \mathbb{E}[f(X_T)] = \int_{\mathbb{R}} f(x)g_T(x)dx$$

Price series expansion

Suppose $\ell(x) = g_T(x)/w(x) \in L^2_w$ and $f(x) \in L^2_w$. Then

$$\pi_f = \langle f, \ell \rangle_w = \sum_{n \ge 0} f_n \ell_n \tag{5}$$

for the Fourier coefficients and Hermite moments

$$f_n = \langle f, H_n \rangle_w, \quad \ell_n = \langle \ell, H_n \rangle_w = \int_{\mathbb{R}} H_n(x) g_T(x) \, dx$$

Price approximation

$$\pi_{f} \approx \pi_{f}^{(N)} = \sum_{n=0}^{N} f_{n} \ell_{n} = \sum_{n=0}^{N} \langle f, \ell_{n} H_{n} \rangle_{w} = \int_{\mathbb{R}} f(x) g_{T}^{(N)}(x) \, dx \quad (6)$$

Density approximation and pricing algorithm

Density approximation

"Gram-Charlier A expansion"

$$g_T^{(N)}(x) = w(x) \sum_{n=0}^N \ell_n H_n(x)$$

Density approximation

"Gram-Charlier A expansion"

$$g_T^{(N)}(x) = w(x) \sum_{n=0}^N \ell_n H_n(x)$$

Gram-Charlier expansions of prices: Jarrow and Rudd (1982), Corrado and Su (1996) ... Drimus, Necula, and Farkas (2013), Heston and Rossi (2015)...

Density approximation

"Gram-Charlier A expansion"

$$g_T^{(N)}(x) = w(x) \sum_{n=0}^N \ell_n H_n(x)$$

Gram-Charlier expansions of prices: Jarrow and Rudd (1982), Corrado and Su (1996) ... Drimus, Necula, and Farkas (2013), Heston and Rossi (2015)...

Density approximation and pricing algorithm

European calls and puts - Fourier coefficients

Theorem

Consider the discounted payoff function for a call option with log strike k,

$$f(x) = e^{-rT} \left(e^x - e^k \right)^+$$

Its Fourier coefficients f_n for $n \ge 1$ are given by

$$f_{n} = e^{-rT + \mu_{w}} \frac{1}{\sqrt{n!}} \sigma_{w} I_{n-1} \left(\frac{k - \mu_{w}}{\sigma_{w}}; \sigma_{w} \right)$$

The functions $I_n(\mu; \nu)$ are defined recursively by

$$\begin{split} I_0(\mu;\nu) &= \mathrm{e}^{\frac{\nu^2}{2}} \Phi(\nu-\mu);\\ I_n(\mu;\nu) &= \mathscr{H}_{n-1}(\mu) \mathrm{e}^{\nu\mu} \phi(\mu) + \nu I_{n-1}(\mu;\nu), \quad n \geq 1 \end{split}$$

where $\mathscr{H}_n(x)$ are the standard Hermite polynomials, $\Phi(x)$ denotes the standard Gaussian distribution function, and $\phi(x)$ its density Density approximation and pricing algorithm

Computational cost

Theorem The coefficients ℓ_n are given by

 $\ell_n = [h_1(V_0, X_0), \dots, h_M(V_0, X_0)] e^{TG_n} \mathbf{e}_{\pi(0,n)}, \quad 0 \le n \le N$

where \mathbf{e}_i is the *i*-th standard basis vector in \mathbb{R}^M and h_0, \ldots, h_M is a basis of polynomials. G_n is the $(M \times M)$ -matrix representing the infinitesimal generator of (V_t, X_t) on Pol_N – sparse matrix

Example: Call option pricing

Figure: The Fourier coefficients (first row), the Hermite coefficients (second row), and the price expansion (third row) as a function of the order *n*. The parameters values are T = 1/12, $X_0 = k = 0$, $\kappa = 0.5$, $\theta = V_0 = (0.25)^2$, $\sigma = 0.25$, $v_{min} = (0.10)^2$, $\rho = -0.5$, and $v_{max} \in \{0.3, 1, 5\}$

Error bounds

Pricing error $\pi_f - \pi_f^{(N)} = \epsilon^{(N)}$

$$\left|\epsilon^{(N)}\right| = \left|\sum_{n>N} f_n \ell_n\right| \le \sqrt{\left(\sum_{n>N} f_n^2\right)\left(\sum_{n>N} \ell_n^2\right)}$$

Error bounds

Pricing error
$$\pi_f - \pi_f^{(N)} = \epsilon^{(N)}$$

$$\left|\epsilon^{(N)}\right| = \left|\sum_{n>N} f_n \ell_n\right| \le \sqrt{\left(\sum_{n>N} f_n^2\right) \left(\sum_{n>N} \ell_n^2\right)}$$

Type of bounds

- 1. Analytic: $\ell_n^2, f_n^2 \leq C \times n^{-k}$ for some k > 1 and C > 0
- 2. Numeric: $\sum_{n>N} \ell_n^2 = \|\ell\|_w^2 \sum_{n=0}^N \ell_n^2$

Error bounds

Pricing error
$$\pi_f - \pi_f^{(N)} = \epsilon^{(N)}$$

$$\left|\epsilon^{(N)}\right| = \left|\sum_{n>N} f_n \ell_n\right| \le \sqrt{\left(\sum_{n>N} f_n^2\right) \left(\sum_{n>N} \ell_n^2\right)}$$

Type of bounds

1. Analytic: $\ell_n^2, f_n^2 \leq C \times n^{-k}$ for some k > 1 and C > 02. Numeric: $\sum_{n>N} \ell_n^2 = \|\ell\|_w^2 - \sum_{n=0}^N \ell_n^2$

Volatility smiles - Call option

Fix $\theta = \sqrt{v_{min}v_{max}} = v_*$ and scale up v_{min}

Diffusion function $\sigma \sqrt{Q(v)}$ (1st row) and smile (2nd row)

Numerical aspects

Key corollary revisited

Log-returns density

$$Y_{t_i} = X_{t_i} - X_{t_{i-1}}$$

for $0 \le t_0 < t_1 < t_2 < \cdots < t_n$, $Y = (Y_{t_i})$ has a density $g_{t_0,\dots,t_n}(y)$ Weighting with Gaussians Define $w(y) = \prod_{i=1}^n w_i(y_i)$ where $w_i(y_i)$ is a Gaussian density with variance $\sigma_{w_i}^2$, then $\frac{g_{t_0,\dots,t_n}(y)}{w(y)} \in L^2_w$ if

$$\sigma_{w_i}^2 > \frac{v_{max}(t_i - t_{i-1})}{2}$$

Payoff function $e^{-rt_2}(S_{t_2} - e^k S_{t_1})^+$ with $0 = t_0 < t_1 < t_2$

 $\tilde{f}(y_1, y_2) = e^{-rt_2}(e^{X_0 + y_1 + y_2} - e^{k + X_0 + y_1})^+$

Payoff function $e^{-rt_2}(S_{t_2} - e^k S_{t_1})^+$ with $0 = t_0 < t_1 < t_2$

$$\tilde{f}(y_1, y_2) = e^{-rt_2}(e^{X_0 + y_1 + y_2} - e^{k + X_0 + y_1})^+$$

Fourier coefficients

$$\begin{split} \tilde{f}_{m_1,m_2} &= \int_{\mathbb{R}^2} \tilde{f}(y) H_{m_1}(y_1) H_{m_2}(y_2) w(y) dy \\ &= f_{m_2}^{(0,k)} \frac{\sigma_w^{m_1}}{\sqrt{m_1!}} e^{X_0 - rT + \mu_{w_1} + \sigma_{w_1}^2/2} \end{split}$$

Payoff function $e^{-rt_2}(S_{t_2} - e^k S_{t_1})^+$ with $0 = t_0 < t_1 < t_2$

$$\tilde{f}(y_1, y_2) = e^{-rt_2}(e^{X_0 + y_1 + y_2} - e^{k + X_0 + y_1})^+$$

Fourier coefficients

$$\begin{split} \tilde{f}_{m_1,m_2} &= \int_{\mathbb{R}^2} \tilde{f}(y) H_{m_1}(y_1) H_{m_2}(y_2) w(y) dy \\ &= f_{m_2}^{(0,k)} \frac{\sigma_w^{m_1}}{\sqrt{m_1!}} e^{X_0 - rT + \mu_{w_1} + \sigma_{w_1}^2/2} \end{split}$$

Hermite moments

$$\ell_{m_1,m_2} = \mathbb{E}[H_{m_1}(Y_{t_1})H_{m_2}(Y_{t_2})] \ = \mathbb{E}\left[H_{m_1}(Y_{t_1})\mathbb{E}\left[H_{m_2}(Y_{t_2}) \mid \mathscr{F}_{t_1}
ight]
ight]$$

Payoff function $e^{-rt_2}(S_{t_2} - e^k S_{t_1})^+$ with $0 = t_0 < t_1 < t_2$

$$\tilde{f}(y_1, y_2) = e^{-rt_2}(e^{X_0 + y_1 + y_2} - e^{k + X_0 + y_1})^+$$

Fourier coefficients

$$\begin{split} \tilde{f}_{m_1,m_2} &= \int_{\mathbb{R}^2} \tilde{f}(y) H_{m_1}(y_1) H_{m_2}(y_2) w(y) dy \\ &= f_{m_2}^{(0,k)} \frac{\sigma_w^{m_1}}{\sqrt{m_1!}} e^{X_0 - rT + \mu_{w_1} + \sigma_{w_1}^2/2} \end{split}$$

Hermite moments

$$\ell_{m_1,m_2} = \mathbb{E}[H_{m_1}(Y_{t_1})H_{m_2}(Y_{t_2})] \ = \mathbb{E}\left[H_{m_1}(Y_{t_1})\mathbb{E}\left[H_{m_2}(Y_{t_2}) \mid \mathscr{F}_{t_1}
ight]
ight]$$

Price approximation

$$\pi_{FS} = \sum_{m_1, m_2 \ge 0} \tilde{f}_{m_1, m_2} \ell_{m_1, m_2} \approx \sum_{m_1, m_2 = 0}^{m_1 + m_2 \le N} \tilde{f}_{m_1, m_2} \ell_{m_1, m_2} =: \pi_{FS}^{(N)}$$

Exotic option pricing

Forward start options on the return

Figure: Implied volatility of a forward start option on the return with maturity t + T, and strikes k = -0.10 (black line), k = -0.05 (blue line), and k = 0 (red line) are displayed as a function of maturity T. Here t = 1/12, $X_0 = 0$, $\kappa = 0.5$, $V_0 = \theta = (0.25)^2$, $\sigma = 0.25$, $v_{min} = 10^{-4}$, and $\rho = -0.5$

Conclusion

- new stochastic volatility model, V_t is a Jacobi process
- option price series representation in weighted L_w^2 space
 - Hermite moments (polynomial model)
 - Fourier coefficient (recursive formulas)
- computationally fast, empirically pricing error bounds
- methodology applies to exotic option pricing

Merci beaucoup!

SPX implied volatility calibration

Forward start call option (cont.)

$$t = 1/12$$
, $T - t = 1/52$, and $k = 0$

Conclusion