The Jacobi Stochastic Volatility model

Damien Ackerer ${ }^{1}$ Damir Filipovic̀ ${ }^{1}$ Sergio Pulido ${ }^{2}$

${ }^{1}$ EPFL and Swiss Finance Institute
${ }^{2}$ ENSIIE \& Université d'Évry-Val-d'Essonne
London-Paris Workshop on Mathematical Finance
Paris, September 29, 2016

:.:- Laboratoire de
Mathématiques
et Modélisation
LaMME dewy

Stochastic volatility models

The volatility of stock price log-returns is stochastic

	Black-Scholes	Heston (affine SVJD)
volatility	constant	stochastic $\in \mathbb{R}_{+}$
calls and puts	closed-form	Fourier transform
exotic options	closed-form	\ldots

Black-Scholes model \subset Jacobi model \rightarrow Heston model

- stochastic volatility on a parametrized compact support
- vanilla and exotic option prices have a series representation
- fast and accurate price approximations

Jacobi Stochastic Volatility model

Fix $0 \leq v_{\min }<v_{\max }$. Define the quadratic function

$$
Q(v)=\frac{\left(v-v_{\min }\right)\left(v_{\max }-v\right)}{\left(\sqrt{v_{\max }}-\sqrt{v_{\min }}\right)^{2}} \leq v
$$

Jacobi Model
Stock price dynamics $S_{t}=e^{X_{t}}$ given by

$$
\begin{align*}
& d V_{t}=\kappa\left(\theta-V_{t}\right) d t+\sigma \sqrt{Q\left(V_{t}\right)} d W_{1 t} \\
& d X_{t}=\left(r-V_{t} / 2\right) d t+\rho \sqrt{Q\left(V_{t}\right)} d W_{1 t}+\sqrt{V_{t}-\rho^{2} Q\left(V_{t}\right)} d W_{2 t} \tag{1}
\end{align*}
$$

for $\kappa, \sigma>0, \theta \in\left[v_{\text {min }}, v_{\max }\right]$, interest rate $r, \rho \in[-1,1]$, and 2-dimensional BM $W=\left(W_{1}, W_{2}\right)$

Jacobi Stochastic Volatility model

Fix $0 \leq v_{\min }<v_{\max }$. Define the quadratic function

$$
Q(v)=\frac{\left(v-v_{\min }\right)\left(v_{\max }-v\right)}{\left(\sqrt{v_{\max }}-\sqrt{v_{\min }}\right)^{2}} \leq v
$$

Jacobi Model
Stock price dynamics $S_{t}=e^{X_{t}}$ given by

$$
\begin{align*}
& d V_{t}=\kappa\left(\theta-V_{t}\right) d t+\sigma \sqrt{Q\left(V_{t}\right)} d W_{1 t} \\
& d X_{t}=\left(r-V_{t} / 2\right) d t+\rho \sqrt{Q\left(V_{t}\right)} d W_{1 t}+\sqrt{V_{t}-\rho^{2} Q\left(V_{t}\right)} d W_{2 t} \tag{1}
\end{align*}
$$

for $\kappa, \sigma>0, \theta \in\left[v_{\text {min }}, v_{\max }\right]$, interest rate $r, \rho \in[-1,1]$, and 2-dimensional BM $W=\left(W_{1}, W_{2}\right)$
Remark: $\mathrm{e}^{-r t} S_{t}=\mathrm{e}^{-r t+X_{t}}$ is a martingale

Some properties

The function $Q(v)$
$v \geq Q(v), v=Q(v)$ if and only if $v=\sqrt{v_{\text {min }} v_{\text {max }}}$, and $Q(v) \geq 0$ for all $v \in\left[v_{\text {min }}, v_{\max }\right]$

Some properties

The function $Q(v)$
$v \geq Q(v), v=Q(v)$ if and only if $v=\sqrt{v_{\text {min }} v_{\text {max }}}$, and $Q(v) \geq 0$ for all $v \in\left[v_{\text {min }}, v_{\max }\right]$

Instantaneous variance
$d\langle X, X\rangle_{t}=V_{t} \in\left[v_{\min }, v_{\text {max }}\right]$ is a Jacobi process

Some properties (cont.)

Polynomial model
$\left(V_{t}, X_{t}\right)$ is a polynomial diffusion - efficient calculation of moments

Some properties (cont.)

Polynomial model
(V_{t}, X_{t}) is a polynomial diffusion - efficient calculation of moments

Black-Scholes model nested
Take $v_{\text {min }}=v_{\text {max }}=\sigma_{\mathrm{BS}}^{2}$

Some properties (cont.)

Polynomial model
$\left(V_{t}, X_{t}\right)$ is a polynomial diffusion - efficient calculation of moments

Black-Scholes model nested
Take $v_{\text {min }}=v_{\text {max }}=\sigma_{\mathrm{BS}}^{2}$
Heston model as a limit case
If $v_{\text {min }} \rightarrow 0$ and $v_{\text {max }} \rightarrow \infty$ then $\left(V_{t}, X_{t}\right)$ converges weakly in the path space to the Heston model

Some properties (cont.)

Polynomial model
$\left(V_{t}, X_{t}\right)$ is a polynomial diffusion - efficient calculation of moments

Black-Scholes model nested
Take $v_{\text {min }}=v_{\text {max }}=\sigma_{\mathrm{BS}}^{2}$
Heston model as a limit case
If $v_{\text {min }} \rightarrow 0$ and $v_{\text {max }} \rightarrow \infty$ then $\left(V_{t}, X_{t}\right)$ converges weakly in the path space to the Heston model

Bounded implied volatility
Option with nonnegative BS gamma (\Leftrightarrow convex payoff for Europ.)

$$
\sqrt{v_{\min }} \leq \sigma_{\mathrm{IV}} \leq \sqrt{v_{\max }}
$$

\Rightarrow Forward start option $\sigma_{\text {IV }}$ does not explode (Jacquier and Roome 2015)

Log-price density

We define

$$
C_{T}=\int_{0}^{T}\left(V_{t}-\rho^{2} Q\left(V_{t}\right)\right) d t
$$

Theorem
Let $\epsilon<1 /\left(2 v_{\max } T\right)$. If $C_{T}>0$ then the distribution of X_{T} admits a density $g_{T}(x)$ on \mathbb{R} that satisfies

$$
\begin{equation*}
\int_{\mathbb{R}} \mathrm{e}^{\epsilon x^{2}} g_{T}(x) d x<\infty \tag{2}
\end{equation*}
$$

If

$$
\begin{equation*}
\mathbb{E}\left[C_{T}^{-1 / 2}\right]<\infty \tag{3}
\end{equation*}
$$

then $g_{T}(x)$ and $\mathrm{e}^{\epsilon x^{2}} g_{T}(x)$ are uniformly bounded and continuous on \mathbb{R}. A sufficient condition for (3) to hold is

$$
v_{\min }>0 \text { and } \rho^{2}<1
$$

Log-price density

We define

$$
C_{T}=\int_{0}^{T}\left(V_{t}-\rho^{2} Q\left(V_{t}\right)\right) d t
$$

Theorem
Let $\epsilon<1 /\left(2 v_{\max } T\right)$. If $C_{T}>0$ then the distribution of X_{T} admits a density $g_{T}(x)$ on \mathbb{R} that satisfies

$$
\begin{equation*}
\int_{\mathbb{R}} \mathrm{e}^{\epsilon x^{2}} g_{T}(x) d x<\infty \tag{2}
\end{equation*}
$$

If

$$
\begin{equation*}
\mathbb{E}\left[C_{T}^{-1 / 2}\right]<\infty \tag{3}
\end{equation*}
$$

then $g_{T}(x)$ and $\mathrm{e}^{\epsilon \chi^{2}} g_{T}(x)$ are uniformly bounded and continuous on \mathbb{R}. A sufficient condition for (3) to hold is

$$
v_{\min }>0 \text { and } \rho^{2}<1
$$

Remark: The Heston model does not satisfy (2) for any $\epsilon>0$

A crucial corollary

Corollary

Assume (3) holds. Then $\ell(x)=\frac{g_{T}(x)}{w(x)} \in L_{w}^{2}$, where

$$
L_{w}^{2}:=\left\{h: \int_{\mathbb{R}}|h(x)|^{2} w(x) d x\right\}
$$

and $w(x)$ is any Gaussian density with variance σ_{w}^{2} satisfying

$$
\begin{equation*}
\sigma_{w}^{2}>\frac{v_{\max } T}{2} \tag{4}
\end{equation*}
$$

A crucial corollary

Corollary

Assume (3) holds. Then $\ell(x)=\frac{g_{\tau}(x)}{w(x)} \in L_{w}^{2}$, where

$$
L_{w}^{2}:=\left\{h: \int_{\mathbb{R}}|h(x)|^{2} w(x) d x\right\}
$$

and $w(x)$ is any Gaussian density with variance σ_{w}^{2} satisfying

$$
\begin{equation*}
\sigma_{w}^{2}>\frac{v_{\max } T}{2} \tag{4}
\end{equation*}
$$

- (Filipovic, Mayerhofer, Schneider 2013) For the Heston model we have that $\ell(x)=\frac{g_{T}(x)}{w(x)} \in L_{w}^{2}$, where $w(x)$ is a (bilateral) Gamma density

Weighted L^{2}-space

The weight function
$w(x)=$ Gaussian density with mean μ_{w} and variance σ_{w}^{2}

Weighted L^{2}-space

The weight function

$$
w(x)=\text { Gaussian density with mean } \mu_{w} \text { and variance } \sigma_{w}^{2}
$$

The weighted Hilbert space

$$
L_{w}^{2}=\left\{f(x) \mid\|f\|_{w}^{2}=\int_{\mathbb{R}} f(x)^{2} w(x) d x<\infty\right\}
$$

which is a Hilbert space with scalar product

$$
\langle f, g\rangle_{w}=\int_{\mathbb{R}} f(x) g(x) w(x) d x
$$

Weighted L^{2}-space

The weight function

$$
w(x)=\text { Gaussian density with mean } \mu_{w} \text { and variance } \sigma_{w}^{2}
$$

The weighted Hilbert space

$$
L_{w}^{2}=\left\{f(x) \mid\|f\|_{w}^{2}=\int_{\mathbb{R}} f(x)^{2} w(x) d x<\infty\right\}
$$

which is a Hilbert space with scalar product

$$
\langle f, g\rangle_{w}=\int_{\mathbb{R}} f(x) g(x) w(x) d x
$$

Orthonormal basis - Generalized Hermite polynomials

$$
H_{n}(x)=\frac{1}{\sqrt{n!}} \mathscr{H}_{n}\left(\frac{x-\mu_{w}}{\sigma_{w}}\right)
$$

where $\mathscr{H}_{n}(x)$ are the standard Hermite polynomials

Price approximation

Pricing problem
Assume that X_{T} has a density $g_{T}(x)$

$$
\pi_{f}=\mathbb{E}\left[f\left(X_{T}\right)\right]=\int_{\mathbb{R}} f(x) g_{T}(x) d x
$$

Price approximation

Pricing problem
Assume that X_{T} has a density $g_{T}(x)$

$$
\pi_{f}=\mathbb{E}\left[f\left(X_{T}\right)\right]=\int_{\mathbb{R}} f(x) g_{T}(x) d x
$$

Price series expansion
Suppose $\ell(x)=g_{T}(x) / w(x) \in L_{w}^{2}$ and $f(x) \in L_{w}^{2}$. Then

$$
\begin{equation*}
\pi_{f}=\langle f, \ell\rangle_{w}=\sum_{n \geq 0} f_{n} \ell_{n} \tag{5}
\end{equation*}
$$

for the Fourier coefficients and Hermite moments

$$
f_{n}=\left\langle f, H_{n}\right\rangle_{w}, \quad \ell_{n}=\left\langle\ell, H_{n}\right\rangle_{w}=\int_{\mathbb{R}} H_{n}(x) g_{T}(x) d x
$$

Price approximation

Pricing problem
Assume that X_{T} has a density $g_{T}(x)$

$$
\pi_{f}=\mathbb{E}\left[f\left(X_{T}\right)\right]=\int_{\mathbb{R}} f(x) g_{T}(x) d x
$$

Price series expansion
Suppose $\ell(x)=g_{T}(x) / w(x) \in L_{w}^{2}$ and $f(x) \in L_{w}^{2}$. Then

$$
\begin{equation*}
\pi_{f}=\langle f, \ell\rangle_{w}=\sum_{n \geq 0} f_{n} \ell_{n} \tag{5}
\end{equation*}
$$

for the Fourier coefficients and Hermite moments

$$
f_{n}=\left\langle f, H_{n}\right\rangle_{w}, \quad \ell_{n}=\left\langle\ell, H_{n}\right\rangle_{w}=\int_{\mathbb{R}} H_{n}(x) g_{T}(x) d x
$$

Price approximation

$$
\begin{equation*}
\pi_{f} \approx \pi_{f}^{(N)}=\sum_{n=0}^{N} f_{n} \ell_{n}=\sum_{n=0}^{N}\left\langle f, \ell_{n} H_{n}\right\rangle_{w}=\int_{\mathbb{R}} f(x) g_{T}^{(N)}(x) d x \tag{6}
\end{equation*}
$$

Density approximation

"Gram-Charlier A expansion"

$$
g_{T}^{(N)}(x)=w(x) \sum_{n=0}^{N} \ell_{n} H_{n}(x)
$$

Density approximation

"Gram-Charlier A expansion"

$$
g_{T}^{(N)}(x)=w(x) \sum_{n=0}^{N} \ell_{n} H_{n}(x)
$$

Gram-Charlier expansions of prices: Jarrow and Rudd (1982), Corrado and Su (1996) ... Drimus, Necula, and Farkas (2013), Heston and Rossi (2015)...

Density approximation

"Gram-Charlier A expansion"

$$
g_{T}^{(N)}(x)=w(x) \sum_{n=0}^{N} \ell_{n} H_{n}(x)
$$

Gram-Charlier expansions of prices: Jarrow and Rudd (1982), Corrado and Su (1996) ... Drimus, Necula, and Farkas (2013), Heston and Rossi (2015)...

$\sigma_{w} \in\{1 \nu, 1.5 \nu, 2 \nu\}$ with $\nu=\sqrt{v_{\max } T / 2}+\epsilon, T=1 / 12, X_{0}=0, \kappa=0.5$,
$\theta=V_{0}=(0.25)^{2}, \sigma=0.25, v_{\text {min }}=(0.10)^{2}, \rho=-0.5$, and $v_{\text {max }}=1$

European calls and puts - Fourier coefficients

Theorem

Consider the discounted payoff function for a call option with log strike k,

$$
f(x)=\mathrm{e}^{-r T}\left(\mathrm{e}^{x}-\mathrm{e}^{k}\right)^{+}
$$

Its Fourier coefficients f_{n} for $n \geq 1$ are given by

$$
f_{n}=\mathrm{e}^{-r T+\mu_{w}} \frac{1}{\sqrt{n!}} \sigma_{w} I_{n-1}\left(\frac{k-\mu_{w}}{\sigma_{w}} ; \sigma_{w}\right)
$$

The functions $I_{n}(\mu ; \nu)$ are defined recursively by

$$
\begin{aligned}
& I_{0}(\mu ; \nu)=\mathrm{e}^{\frac{\nu^{2}}{2}} \Phi(\nu-\mu) \\
& I_{n}(\mu ; \nu)=\mathscr{H}_{n-1}(\mu) \mathrm{e}^{\nu \mu} \phi(\mu)+\nu I_{n-1}(\mu ; \nu), \quad n \geq 1
\end{aligned}
$$

where $\mathscr{H}_{n}(x)$ are the standard Hermite polynomials, $\Phi(x)$ denotes the standard Gaussian distribution function, and $\phi(x)$ its density

Computational cost

Theorem
The coefficients ℓ_{n} are given by

$$
\ell_{n}=\left[h_{1}\left(V_{0}, X_{0}\right), \ldots, h_{M}\left(V_{0}, X_{0}\right)\right] \mathrm{e}^{T G_{n}} \mathbf{e}_{\pi(0, n)}, \quad 0 \leq n \leq N
$$

where \mathbf{e}_{i} is the i-th standard basis vector in \mathbb{R}^{M} and h_{0}, \ldots, h_{M} is a basis of polynomials. G_{n} is the $(M \times M)$-matrix representing the infinitesimal generator of $\left(V_{t}, X_{t}\right)$ on Pol_{N} - sparse matrix

Example: Call option pricing

Figure: The Fourier coefficients (first row), the Hermite coefficients (second row), and the price expansion (third row) as a function of the order n. The parameters values are $T=1 / 12, X_{0}=k=0, \kappa=0.5$, $\theta=V_{0}=(0.25)^{2}, \sigma=0.25, v_{\text {min }}=(0.10)^{2}, \rho=-0.5$, and $v_{\text {max }} \in\{0.3,1,5\}$

Error bounds

Pricing error $\pi_{f}-\pi_{f}^{(N)}=\epsilon^{(N)}$

$$
\left|\epsilon^{(N)}\right|=\left|\sum_{n>N} f_{n} \ell_{n}\right| \leq \sqrt{\left(\sum_{n>N} f_{n}^{2}\right)\left(\sum_{n>N} \ell_{n}^{2}\right)}
$$

Error bounds

Pricing error $\pi_{f}-\pi_{f}^{(N)}=\epsilon^{(N)}$

$$
\left|\epsilon^{(N)}\right|=\left|\sum_{n>N} f_{n} \ell_{n}\right| \leq \sqrt{\left(\sum_{n>N} f_{n}^{2}\right)\left(\sum_{n>N} \ell_{n}^{2}\right)}
$$

Type of bounds

1. Analytic: $\ell_{n}^{2}, f_{n}^{2} \leq C \times n^{-k}$ for some $k>1$ and $C>0$
2. Numeric: $\sum_{n>N} \ell_{n}^{2}=\|\ell\|_{w}^{2}-\sum_{n=0}^{N} \ell_{n}^{2}$

Error bounds

Pricing error $\pi_{f}-\pi_{f}^{(N)}=\epsilon^{(N)}$

$$
\left|\epsilon^{(N)}\right|=\left|\sum_{n>N} f_{n} \ell_{n}\right| \leq \sqrt{\left(\sum_{n>N} f_{n}^{2}\right)\left(\sum_{n>N} \ell_{n}^{2}\right)}
$$

Type of bounds

1. Analytic: $\ell_{n}^{2}, f_{n}^{2} \leq C \times n^{-k}$ for some $k>1$ and $C>0$
2. Numeric: $\sum_{n>N} \ell_{n}^{2}=\|\ell\|_{w}^{2}-\sum_{n=0}^{N} \ell_{n}^{2}$

Volatility smiles - Call option

Fix $\theta=\sqrt{v_{\min } v_{\max }}=v_{*}$ and scale up $v_{\text {min }}$

$$
v_{\text {min }}=(0.10)^{2} \quad v_{\text {min }}=(0.175)^{2} \quad v_{\text {min }}=(0.245)^{2}
$$

Diffusion function $\sigma \sqrt{Q(v)}$ (1 $1^{\text {st }}$ row) and smile (2 $2^{\text {nd }}$ row)

Key corollary revisited

Log-returns density

$$
Y_{t_{i}}=X_{t_{i}}-X_{t_{i-1}}
$$

for $0 \leq t_{0}<t_{1}<t_{2}<\cdots<t_{n}, Y=\left(Y_{t_{i}}\right)$ has a density $g_{t_{0}, \ldots, t_{n}}(y)$
Weighting with Gaussians
Define $w(y)=\prod_{i=1}^{n} w_{i}\left(y_{i}\right)$ where $w_{i}\left(y_{i}\right)$ is a Gaussian density with variance $\sigma_{w_{i}}^{2}$, then $\frac{g_{t_{0}}, \ldots, t_{n}(y)}{w(y)} \in L_{w}^{2}$ if

$$
\sigma_{w_{i}}^{2}>\frac{v_{\max }\left(t_{i}-t_{i-1}\right)}{2}
$$

Forward start call option

Payoff function $e^{-r t_{2}}\left(S_{t_{2}}-e^{k} S_{t_{1}}\right)^{+}$with $0=t_{0}<t_{1}<t_{2}$

$$
\tilde{f}\left(y_{1}, y_{2}\right)=e^{-r t_{2}}\left(e^{x_{0}+y_{1}+y_{2}}-e^{k+X_{0}+y_{1}}\right)^{+}
$$

Forward start call option

Payoff function $e^{-r t_{2}}\left(S_{t_{2}}-e^{k} S_{t_{1}}\right)^{+}$with $0=t_{0}<t_{1}<t_{2}$

$$
\tilde{f}\left(y_{1}, y_{2}\right)=e^{-r t_{2}}\left(e^{x_{0}+y_{1}+y_{2}}-e^{k+X_{0}+y_{1}}\right)^{+}
$$

Fourier coefficients

$$
\begin{aligned}
\tilde{f}_{m_{1}, m_{2}} & =\int_{\mathbb{R}^{2}} \tilde{f}(y) H_{m_{1}}\left(y_{1}\right) H_{m_{2}}\left(y_{2}\right) w(y) d y \\
& =f_{m_{2}}^{(0, k)} \frac{\sigma_{w}^{m_{1}}}{\sqrt{m_{1}!}} \mathrm{e}^{x_{0}-r T+\mu_{w_{1}}+\sigma_{w_{1}}^{2} / 2}
\end{aligned}
$$

Forward start call option

Payoff function $e^{-r t_{2}}\left(S_{t_{2}}-e^{k} S_{t_{1}}\right)^{+}$with $0=t_{0}<t_{1}<t_{2}$

$$
\tilde{f}\left(y_{1}, y_{2}\right)=e^{-r t_{2}}\left(e^{x_{0}+y_{1}+y_{2}}-e^{k+X_{0}+y_{1}}\right)^{+}
$$

Fourier coefficients

$$
\begin{aligned}
\tilde{f}_{m_{1}, m_{2}} & =\int_{\mathbb{R}^{2}} \tilde{f}(y) H_{m_{1}}\left(y_{1}\right) H_{m_{2}}\left(y_{2}\right) w(y) d y \\
& =f_{m_{2}}^{(0, k)} \frac{\sigma_{w}^{m_{1}}}{\sqrt{m_{1}!}} \mathrm{e}^{x_{0}-r T+\mu_{w_{1}}+\sigma_{w_{1}}^{2} / 2}
\end{aligned}
$$

Hermite moments

$$
\begin{aligned}
\ell_{m_{1}, m_{2}} & =\mathbb{E}\left[H_{m_{1}}\left(Y_{t_{1}}\right) H_{m_{2}}\left(Y_{t_{2}}\right)\right] \\
& =\mathbb{E}\left[H_{m_{1}}\left(Y_{t_{1}}\right) \mathbb{E}\left[H_{m_{2}}\left(Y_{t_{2}}\right) \mid \mathscr{F}_{t_{1}}\right]\right]
\end{aligned}
$$

Forward start call option

Payoff function $e^{-r t_{2}}\left(S_{t_{2}}-e^{k} S_{t_{1}}\right)^{+}$with $0=t_{0}<t_{1}<t_{2}$

$$
\tilde{f}\left(y_{1}, y_{2}\right)=e^{-r t_{2}}\left(e^{x_{0}+y_{1}+y_{2}}-e^{k+x_{0}+y_{1}}\right)^{+}
$$

Fourier coefficients

$$
\begin{aligned}
\tilde{f}_{m_{1}, m_{2}} & =\int_{\mathbb{R}^{2}} \tilde{f}(y) H_{m_{1}}\left(y_{1}\right) H_{m_{2}}\left(y_{2}\right) w(y) d y \\
& =f_{m_{2}}^{(0, k)} \frac{\sigma_{w}^{m_{1}}}{\sqrt{m_{1}!}} \mathrm{e}^{x_{0}-r T+\mu_{w_{1}}+\sigma_{w_{1}}^{2} / 2}
\end{aligned}
$$

Hermite moments

$$
\begin{aligned}
\ell_{m_{1}, m_{2}} & =\mathbb{E}\left[H_{m_{1}}\left(Y_{t_{1}}\right) H_{m_{2}}\left(Y_{t_{2}}\right)\right] \\
& =\mathbb{E}\left[H_{m_{1}}\left(Y_{t_{1}}\right) \mathbb{E}\left[H_{m_{2}}\left(Y_{t_{2}}\right) \mid \mathscr{F}_{t_{1}}\right]\right]
\end{aligned}
$$

Price approximation

$$
\pi_{F S}=\sum_{m_{1}, m_{2} \geq 0} \tilde{f}_{m_{1}, m_{2}} \ell_{m_{1}, m_{2}} \approx \sum_{m_{1}, m_{2}=0}^{m_{1}+m_{2} \leq N} \tilde{f}_{m_{1}, m_{2}} \ell_{m_{1}, m_{2}}=: \pi_{F S}^{(N)}
$$

Forward start options on the return

$$
v_{\max }=1
$$

$$
v_{\max }=(0.3)^{2}
$$

Figure: Implied volatility of a forward start option on the return with maturity $t+T$, and strikes $k=-0.10$ (black line), $k=-0.05$ (blue line), and $k=0$ (red line) are displayed as a function of maturity T. Here $t=1 / 12, X_{0}=0, \kappa=0.5, V_{0}=\theta=(0.25)^{2}, \sigma=0.25$, $v_{\text {min }}=10^{-4}$, and $\rho=-0.5$

Conclusion

- new stochastic volatility model, V_{t} is a Jacobi process
- option price series representation in weighted L_{w}^{2} space
- Hermite moments (polynomial model)
- Fourier coefficient (recursive formulas)
- computationally fast, empirically \gtrsim Heston model, pricing error bounds
- methodology applies to exotic option pricing

Merci beaucoup!

SPX implied volatility calibration

	$\sqrt{\theta}$	κ	σ	ρ	$\sqrt{V_{0}}$	$\sqrt{V_{\min }}$	$\sqrt{V_{\max }}$	RMSE
Jacobi	0.3660	0.7507	1.0072	-0.6057	0.1178	0.0499	0.4476	0.8461
Heston	0.3655	0.7498	0.8573	-0.6047	0.1178			0.9447

Forward start call option (cont.)

$t=1 / 12, T-t=1 / 52$, and $k=0$

