## The Jacobi Stochastic Volatility model

Damien Ackerer <sup>1</sup> Damir Filipovič <sup>1</sup> Sergio Pulido <sup>2</sup>

<sup>1</sup>EPFL and Swiss Finance Institute

<sup>2</sup>ENSIIE & Université d'Évry-Val-d'Essonne

London-Paris Workshop on Mathematical Finance Paris, September 29, 2016







European Research Council Established by the European Commission

## Stochastic volatility models

The volatility of stock price log-returns is stochastic

|                | Black-Scholes | Heston (affine SVJD)          |
|----------------|---------------|-------------------------------|
| volatility     | constant      | stochastic $\in \mathbb{R}_+$ |
| calls and puts | closed-form   | Fourier transform             |
| exotic options | closed-form   |                               |

 $\mathsf{Black}\text{-}\mathsf{Scholes} \ \mathsf{model} \subset \fbox{\mathsf{Jacobi}} \ \mathsf{model} \to \mathsf{Heston} \ \mathsf{model}$ 

- stochastic volatility on a parametrized compact support
- vanilla and exotic option prices have a series representation
- fast and accurate price approximations

## Jacobi Stochastic Volatility model

Fix  $0 \le v_{min} < v_{max}$ . Define the quadratic function

$$Q(v) = \frac{(v - v_{min})(v_{max} - v)}{(\sqrt{v_{max}} - \sqrt{v_{min}})^2} \le v$$

Jacobi Model

Stock price dynamics  $S_t = e^{X_t}$  given by

$$dV_t = \kappa(\theta - V_t) dt + \sigma \sqrt{Q(V_t)} dW_{1t}$$
  
$$dX_t = (r - V_t/2) dt + \rho \sqrt{Q(V_t)} dW_{1t} + \sqrt{V_t - \rho^2 Q(V_t)} dW_{2t}$$
  
(1)

for  $\kappa, \sigma > 0$ ,  $\theta \in [v_{min}, v_{max}]$ , interest rate  $r, \rho \in [-1, 1]$ , and 2-dimensional BM  $W = (W_1, W_2)$ 

## Jacobi Stochastic Volatility model

Fix  $0 \le v_{min} < v_{max}$ . Define the quadratic function

$$Q(v) = \frac{(v - v_{min})(v_{max} - v)}{(\sqrt{v_{max}} - \sqrt{v_{min}})^2} \le v$$

Jacobi Model

Stock price dynamics  $S_t = e^{X_t}$  given by

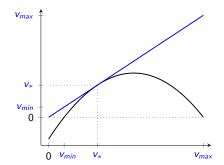
$$dV_t = \kappa(\theta - V_t) dt + \sigma \sqrt{Q(V_t)} dW_{1t}$$
  
$$dX_t = (r - V_t/2) dt + \rho \sqrt{Q(V_t)} dW_{1t} + \sqrt{V_t - \rho^2 Q(V_t)} dW_{2t}$$
  
(1)

for  $\kappa, \sigma > 0$ ,  $\theta \in [v_{min}, v_{max}]$ , interest rate  $r, \rho \in [-1, 1]$ , and 2-dimensional BM  $W = (W_1, W_2)$ 

**Remark:**  $e^{-rt}S_t = e^{-rt+X_t}$  is a martingale

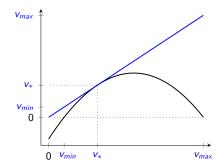
#### Some properties

The function Q(v) $v \ge Q(v)$ , v = Q(v) if and only if  $v = \sqrt{v_{min}v_{max}}$ , and  $Q(v) \ge 0$ for all  $v \in [v_{min}, v_{max}]$ 



#### Some properties

The function Q(v) $v \ge Q(v)$ , v = Q(v) if and only if  $v = \sqrt{v_{min}v_{max}}$ , and  $Q(v) \ge 0$ for all  $v \in [v_{min}, v_{max}]$ 



Instantaneous variance  $d\langle X, X \rangle_t = V_t \in [v_{min}, v_{max}]$  is a Jacobi process

Motivation and model specification

Polynomial model

# $(V_t, X_t)$ is a polynomial diffusion – efficient calculation of moments

Polynomial model

 $(V_t, X_t)$  is a polynomial diffusion – efficient calculation of moments

Black-Scholes model nested Take  $v_{min} = v_{max} = \sigma_{BS}^2$ 

Polynomial model

 $(V_t, X_t)$  is a polynomial diffusion – efficient calculation of moments

Black-Scholes model nested Take  $v_{min} = v_{max} = \sigma_{BS}^2$ 

Heston model as a limit case If  $v_{min} \rightarrow 0$  and  $v_{max} \rightarrow \infty$  then  $(V_t, X_t)$  converges weakly in the path space to the Heston model

#### Polynomial model

 $(V_t, X_t)$  is a polynomial diffusion – efficient calculation of moments

Black-Scholes model nested Take  $v_{min} = v_{max} = \sigma_{BS}^2$ 

Heston model as a limit case If  $v_{min} \rightarrow 0$  and  $v_{max} \rightarrow \infty$  then  $(V_t, X_t)$  converges weakly in the path space to the Heston model

#### Bounded implied volatility

Option with nonnegative BS gamma ( $\Leftrightarrow$  convex payoff for Europ.)

 $\sqrt{v_{min}} \le \sigma_{\rm IV} \le \sqrt{v_{max}}$ 

# $\Rightarrow$ Forward start option $\sigma_{\rm IV}$ does not explode (Jacquier and Roome 2015)

Motivation and model specification

## Log-price density

We define

$$C_{T} = \int_{0}^{T} \left( V_{t} - \rho^{2} Q(V_{t}) \right) dt$$

Theorem

Let  $\epsilon < 1/(2v_{max}T)$ . If  $C_T > 0$  then the distribution of  $X_T$  admits a density  $g_T(x)$  on  $\mathbb{R}$  that satisfies

$$\int_{\mathbb{R}} e^{\epsilon x^2} g_{\mathcal{T}}(x) \, dx < \infty \tag{2}$$

lf

$$\mathbb{E}\left[C_{T}^{-1/2}\right] < \infty \tag{3}$$

then  $g_T(x)$  and  $e^{\epsilon x^2} g_T(x)$  are uniformly bounded and continuous on  $\mathbb{R}$ . A sufficient condition for (3) to hold is  $v_{min} > 0$  and  $\rho^2 < 1$ 

## Log-price density

We define

$$C_{T} = \int_{0}^{T} \left( V_{t} - \rho^{2} Q(V_{t}) \right) dt$$

Theorem

Let  $\epsilon < 1/(2v_{max}T)$ . If  $C_T > 0$  then the distribution of  $X_T$  admits a density  $g_T(x)$  on  $\mathbb{R}$  that satisfies

$$\int_{\mathbb{R}} e^{\epsilon x^2} g_{\mathcal{T}}(x) \, dx < \infty \tag{2}$$

lf

$$\mathbb{E}\left[C_{T}^{-1/2}\right] < \infty \tag{3}$$

then  $g_T(x)$  and  $e^{\epsilon x^2} g_T(x)$  are uniformly bounded and continuous on  $\mathbb{R}$ . A sufficient condition for (3) to hold is  $v_{min} > 0$  and  $\rho^2 < 1$ 

**Remark:** The Heston model does not satisfy (2) for any  $\epsilon > 0$ 

## A crucial corollary

Corollary Assume (3) holds. Then  $\ell(x) = \frac{g_T(x)}{w(x)} \in L^2_w$ , where

$$L^2_w := \left\{ h : \int_{\mathbb{R}} |h(x)|^2 w(x) \, dx \right\}$$

and w(x) is any Gaussian density with variance  $\sigma_w^2$  satisfying

$$\sigma_w^2 > \frac{v_{max} T}{2} \tag{4}$$

## A crucial corollary

Corollary Assume (3) holds. Then  $\ell(x) = \frac{g_T(x)}{w(x)} \in L^2_w$ , where

$$L^2_w := \left\{ h: \int_{\mathbb{R}} |h(x)|^2 w(x) \, dx \right\}$$

and w(x) is any Gaussian density with variance  $\sigma_w^2$  satisfying

$$\sigma_w^2 > \frac{v_{max} T}{2} \tag{4}$$

▶ (Filipovic, Mayerhofer, Schneider 2013) For the Heston model we have that  $\ell(x) = \frac{g_T(x)}{w(x)} \in L^2_w$ , where w(x) is a (bilateral) Gamma density

# Weighted $L^2$ -space

#### The weight function

w(x) = Gaussian density with mean  $\mu_w$  and variance  $\sigma_w^2$ 

# Weighted $L^2$ -space

#### The weight function

w(x) = Gaussian density with mean  $\mu_w$  and variance  $\sigma_w^2$ 

The weighted Hilbert space

$$L^2_w = \left\{ f(x) \mid \|f\|^2_w = \int_{\mathbb{R}} f(x)^2 w(x) dx < \infty \right\}$$

which is a Hilbert space with scalar product

$$\langle f,g\rangle_w = \int_{\mathbb{R}} f(x)g(x)w(x)dx$$

# Weighted $L^2$ -space

#### The weight function

w(x) = Gaussian density with mean  $\mu_w$  and variance  $\sigma_w^2$ 

The weighted Hilbert space

$$L^2_w = \left\{ f(x) \mid \|f\|^2_w = \int_{\mathbb{R}} f(x)^2 w(x) dx < \infty \right\}$$

which is a Hilbert space with scalar product

$$\langle f,g\rangle_w = \int_{\mathbb{R}} f(x)g(x)w(x)dx$$

Orthonormal basis - Generalized Hermite polynomials

$$H_n(x) = \frac{1}{\sqrt{n!}} \mathscr{H}_n\left(\frac{x-\mu_w}{\sigma_w}\right)$$

where  $\mathscr{H}_n(x)$  are the standard Hermite polynomials

Density approximation and pricing algorithm

## Price approximation

#### Pricing problem

Assume that  $X_T$  has a density  $g_T(x)$ 

$$\pi_f = \mathbb{E}[f(X_T)] = \int_{\mathbb{R}} f(x)g_T(x)dx$$

## Price approximation

#### Pricing problem

Assume that  $X_T$  has a density  $g_T(x)$ 

$$\pi_f = \mathbb{E}[f(X_T)] = \int_{\mathbb{R}} f(x)g_T(x)dx$$

Price series expansion

Suppose  $\ell(x) = g_T(x)/w(x) \in L^2_w$  and  $f(x) \in L^2_w$ . Then

$$\pi_f = \langle f, \ell \rangle_w = \sum_{n \ge 0} f_n \ell_n \tag{5}$$

for the Fourier coefficients and Hermite moments

$$f_n = \langle f, H_n \rangle_w, \quad \ell_n = \langle \ell, H_n \rangle_w = \int_{\mathbb{R}} H_n(x) g_T(x) \, dx$$

## Price approximation

#### Pricing problem

Assume that  $X_T$  has a density  $g_T(x)$ 

$$\pi_f = \mathbb{E}[f(X_T)] = \int_{\mathbb{R}} f(x)g_T(x)dx$$

Price series expansion

Suppose  $\ell(x) = g_T(x)/w(x) \in L^2_w$  and  $f(x) \in L^2_w$ . Then

$$\pi_f = \langle f, \ell \rangle_w = \sum_{n \ge 0} f_n \ell_n \tag{5}$$

for the Fourier coefficients and Hermite moments

$$f_n = \langle f, H_n \rangle_w, \quad \ell_n = \langle \ell, H_n \rangle_w = \int_{\mathbb{R}} H_n(x) g_T(x) \, dx$$

Price approximation

$$\pi_{f} \approx \pi_{f}^{(N)} = \sum_{n=0}^{N} f_{n} \ell_{n} = \sum_{n=0}^{N} \langle f, \ell_{n} H_{n} \rangle_{w} = \int_{\mathbb{R}} f(x) g_{T}^{(N)}(x) \, dx \quad (6)$$

Density approximation and pricing algorithm

## Density approximation

"Gram-Charlier A expansion"

$$g_T^{(N)}(x) = w(x) \sum_{n=0}^N \ell_n H_n(x)$$

## Density approximation

"Gram-Charlier A expansion"

$$g_T^{(N)}(x) = w(x) \sum_{n=0}^N \ell_n H_n(x)$$

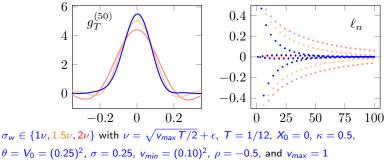
**Gram-Charlier expansions of prices:** Jarrow and Rudd (1982), Corrado and Su (1996) ... Drimus, Necula, and Farkas (2013), Heston and Rossi (2015)...

#### Density approximation

"Gram-Charlier A expansion"

$$g_T^{(N)}(x) = w(x) \sum_{n=0}^N \ell_n H_n(x)$$

**Gram-Charlier expansions of prices:** Jarrow and Rudd (1982), Corrado and Su (1996) ... Drimus, Necula, and Farkas (2013), Heston and Rossi (2015)...



Density approximation and pricing algorithm

European calls and puts - Fourier coefficients

Theorem

Consider the discounted payoff function for a call option with log strike k,

$$f(x) = e^{-rT} \left( e^x - e^k \right)^+$$

Its Fourier coefficients  $f_n$  for  $n \ge 1$  are given by

$$f_{n} = e^{-rT + \mu_{w}} \frac{1}{\sqrt{n!}} \sigma_{w} I_{n-1} \left( \frac{k - \mu_{w}}{\sigma_{w}}; \sigma_{w} \right)$$

The functions  $I_n(\mu; \nu)$  are defined recursively by

$$\begin{split} I_0(\mu;\nu) &= \mathrm{e}^{\frac{\nu^2}{2}} \Phi(\nu-\mu);\\ I_n(\mu;\nu) &= \mathscr{H}_{n-1}(\mu) \mathrm{e}^{\nu\mu} \phi(\mu) + \nu I_{n-1}(\mu;\nu), \quad n \geq 1 \end{split}$$

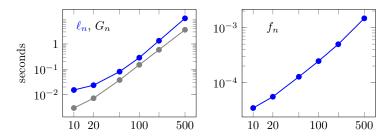
where  $\mathscr{H}_n(x)$  are the standard Hermite polynomials,  $\Phi(x)$  denotes the standard Gaussian distribution function, and  $\phi(x)$  its density Density approximation and pricing algorithm

## Computational cost

Theorem The coefficients  $\ell_n$  are given by

 $\ell_n = [h_1(V_0, X_0), \dots, h_M(V_0, X_0)] e^{TG_n} \mathbf{e}_{\pi(0,n)}, \quad 0 \le n \le N$ 

where  $\mathbf{e}_i$  is the *i*-th standard basis vector in  $\mathbb{R}^M$  and  $h_0, \ldots, h_M$  is a basis of polynomials.  $G_n$  is the  $(M \times M)$ -matrix representing the infinitesimal generator of  $(V_t, X_t)$  on  $\operatorname{Pol}_N$  – sparse matrix



## Example: Call option pricing

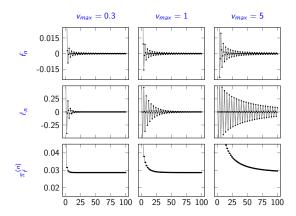


Figure: The Fourier coefficients (first row), the Hermite coefficients (second row), and the price expansion (third row) as a function of the order *n*. The parameters values are T = 1/12,  $X_0 = k = 0$ ,  $\kappa = 0.5$ ,  $\theta = V_0 = (0.25)^2$ ,  $\sigma = 0.25$ ,  $v_{min} = (0.10)^2$ ,  $\rho = -0.5$ , and  $v_{max} \in \{0.3, 1, 5\}$ 

## Error bounds

Pricing error  $\pi_f - \pi_f^{(N)} = \epsilon^{(N)}$ 

$$\left|\epsilon^{(N)}\right| = \left|\sum_{n>N} f_n \ell_n\right| \le \sqrt{\left(\sum_{n>N} f_n^2\right)\left(\sum_{n>N} \ell_n^2\right)}$$

## Error bounds

Pricing error 
$$\pi_f - \pi_f^{(N)} = \epsilon^{(N)}$$

$$\left|\epsilon^{(N)}\right| = \left|\sum_{n>N} f_n \ell_n\right| \le \sqrt{\left(\sum_{n>N} f_n^2\right) \left(\sum_{n>N} \ell_n^2\right)}$$

Type of bounds

- 1. Analytic:  $\ell_n^2, f_n^2 \leq C \times n^{-k}$  for some k > 1 and C > 0
- 2. Numeric:  $\sum_{n>N} \ell_n^2 = \|\ell\|_w^2 \sum_{n=0}^N \ell_n^2$

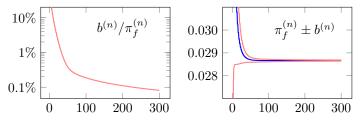
## Error bounds

Pricing error 
$$\pi_f - \pi_f^{(N)} = \epsilon^{(N)}$$

$$\left|\epsilon^{(N)}\right| = \left|\sum_{n>N} f_n \ell_n\right| \le \sqrt{\left(\sum_{n>N} f_n^2\right) \left(\sum_{n>N} \ell_n^2\right)}$$

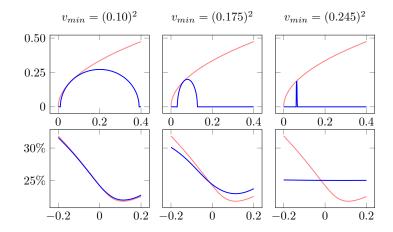
#### Type of bounds

1. Analytic:  $\ell_n^2, f_n^2 \leq C \times n^{-k}$  for some k > 1 and C > 02. Numeric:  $\sum_{n>N} \ell_n^2 = \|\ell\|_w^2 - \sum_{n=0}^N \ell_n^2$ 



## Volatility smiles - Call option

Fix  $\theta = \sqrt{v_{min}v_{max}} = v_*$  and scale up  $v_{min}$ 



Diffusion function  $\sigma \sqrt{Q(v)}$  (1<sup>st</sup> row) and smile (2<sup>nd</sup> row)

Numerical aspects

## Key corollary revisited

#### Log-returns density

$$Y_{t_i} = X_{t_i} - X_{t_{i-1}}$$

for  $0 \le t_0 < t_1 < t_2 < \cdots < t_n$ ,  $Y = (Y_{t_i})$  has a density  $g_{t_0,\dots,t_n}(y)$ Weighting with Gaussians Define  $w(y) = \prod_{i=1}^n w_i(y_i)$  where  $w_i(y_i)$  is a Gaussian density with variance  $\sigma_{w_i}^2$ , then  $\frac{g_{t_0,\dots,t_n}(y)}{w(y)} \in L^2_w$  if

$$\sigma_{w_i}^2 > \frac{v_{max}(t_i - t_{i-1})}{2}$$

Payoff function  $e^{-rt_2}(S_{t_2} - e^k S_{t_1})^+$  with  $0 = t_0 < t_1 < t_2$ 

 $\tilde{f}(y_1, y_2) = e^{-rt_2}(e^{X_0 + y_1 + y_2} - e^{k + X_0 + y_1})^+$ 

Payoff function  $e^{-rt_2}(S_{t_2} - e^k S_{t_1})^+$  with  $0 = t_0 < t_1 < t_2$ 

$$\tilde{f}(y_1, y_2) = e^{-rt_2}(e^{X_0 + y_1 + y_2} - e^{k + X_0 + y_1})^+$$

Fourier coefficients

$$\begin{split} \tilde{f}_{m_1,m_2} &= \int_{\mathbb{R}^2} \tilde{f}(y) H_{m_1}(y_1) H_{m_2}(y_2) w(y) dy \\ &= f_{m_2}^{(0,k)} \frac{\sigma_w^{m_1}}{\sqrt{m_1!}} e^{X_0 - rT + \mu_{w_1} + \sigma_{w_1}^2/2} \end{split}$$

Payoff function  $e^{-rt_2}(S_{t_2} - e^k S_{t_1})^+$  with  $0 = t_0 < t_1 < t_2$ 

$$\tilde{f}(y_1, y_2) = e^{-rt_2}(e^{X_0 + y_1 + y_2} - e^{k + X_0 + y_1})^+$$

Fourier coefficients

$$\begin{split} \tilde{f}_{m_1,m_2} &= \int_{\mathbb{R}^2} \tilde{f}(y) H_{m_1}(y_1) H_{m_2}(y_2) w(y) dy \\ &= f_{m_2}^{(0,k)} \frac{\sigma_w^{m_1}}{\sqrt{m_1!}} e^{X_0 - rT + \mu_{w_1} + \sigma_{w_1}^2/2} \end{split}$$

Hermite moments

$$\ell_{m_1,m_2} = \mathbb{E}[H_{m_1}(Y_{t_1})H_{m_2}(Y_{t_2})] \ = \mathbb{E}\left[H_{m_1}(Y_{t_1})\mathbb{E}\left[H_{m_2}(Y_{t_2}) \mid \mathscr{F}_{t_1}
ight]
ight]$$

Payoff function  $e^{-rt_2}(S_{t_2} - e^k S_{t_1})^+$  with  $0 = t_0 < t_1 < t_2$ 

$$\tilde{f}(y_1, y_2) = e^{-rt_2}(e^{X_0 + y_1 + y_2} - e^{k + X_0 + y_1})^+$$

Fourier coefficients

$$\begin{split} \tilde{f}_{m_1,m_2} &= \int_{\mathbb{R}^2} \tilde{f}(y) H_{m_1}(y_1) H_{m_2}(y_2) w(y) dy \\ &= f_{m_2}^{(0,k)} \frac{\sigma_w^{m_1}}{\sqrt{m_1!}} e^{X_0 - rT + \mu_{w_1} + \sigma_{w_1}^2/2} \end{split}$$

Hermite moments

$$\ell_{m_1,m_2} = \mathbb{E}[H_{m_1}(Y_{t_1})H_{m_2}(Y_{t_2})] \ = \mathbb{E}\left[H_{m_1}(Y_{t_1})\mathbb{E}\left[H_{m_2}(Y_{t_2}) \mid \mathscr{F}_{t_1}
ight]
ight]$$

Price approximation

$$\pi_{FS} = \sum_{m_1, m_2 \ge 0} \tilde{f}_{m_1, m_2} \ell_{m_1, m_2} \approx \sum_{m_1, m_2 = 0}^{m_1 + m_2 \le N} \tilde{f}_{m_1, m_2} \ell_{m_1, m_2} =: \pi_{FS}^{(N)}$$

Exotic option pricing

#### Forward start options on the return

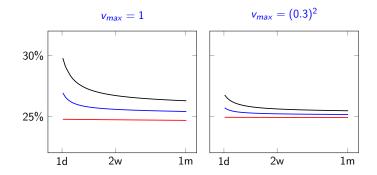


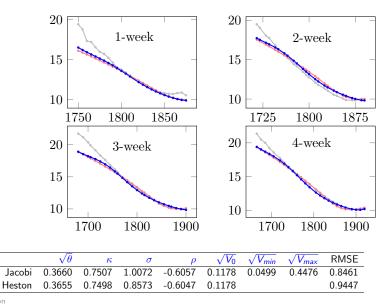
Figure: Implied volatility of a forward start option on the return with maturity t + T, and strikes k = -0.10 (black line), k = -0.05 (blue line), and k = 0 (red line) are displayed as a function of maturity T. Here t = 1/12,  $X_0 = 0$ ,  $\kappa = 0.5$ ,  $V_0 = \theta = (0.25)^2$ ,  $\sigma = 0.25$ ,  $v_{min} = 10^{-4}$ , and  $\rho = -0.5$ 

## Conclusion

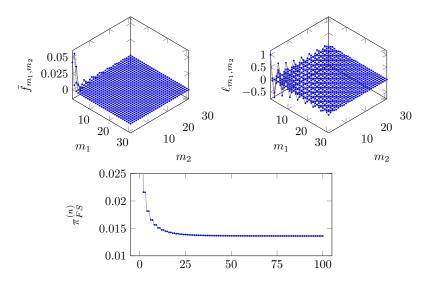
- new stochastic volatility model, V<sub>t</sub> is a Jacobi process
- option price series representation in weighted  $L_w^2$  space
  - Hermite moments (polynomial model)
  - Fourier coefficient (recursive formulas)
- computationally fast, empirically pricing error bounds
- methodology applies to exotic option pricing

# Merci beaucoup!

## SPX implied volatility calibration



## Forward start call option (cont.)



$$t = 1/12$$
,  $T - t = 1/52$ , and  $k = 0$ 

Conclusion